Modified sparse regression to solve heterogeneity and hybrid models for increasing the prediction accuracy of seaweed big data with outliers.

阅读:7
作者:Ibidoja Olayemi Joshua, Shan Fam Pei, Ali Majid Khan Majahar
The linear regression is critical for data modelling, especially for scientists. Nevertheless, with the plenty of high-dimensional data, there are data with more explanatory variables than the number of observations. In such circumstances, traditional approaches fail. This paper proposes a modified sparse regression model that solves the problem of heterogeneity using seaweed big data as a use case. The modified heterogeneity models for ridge, LASSO and Elastic net were used to model the data. Robust estimations M Bi-Square, M Hampel, M Huber, MM and S were used. Based on the results, the hybrid model of sparse regression for before, after, and modified heterogeneity robust regression with the 45 high ranking variables and a 2-sigma limit can be used efficiently and effectively to reduce the outliers. The obtained results confirm that the hybrid model of the modified sparse LASSO with the M Bi-Square estimator for the 45 high ranking parameters performed better compared with other existing methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。