The linear regression is critical for data modelling, especially for scientists. Nevertheless, with the plenty of high-dimensional data, there are data with more explanatory variables than the number of observations. In such circumstances, traditional approaches fail. This paper proposes a modified sparse regression model that solves the problem of heterogeneity using seaweed big data as a use case. The modified heterogeneity models for ridge, LASSO and Elastic net were used to model the data. Robust estimations M Bi-Square, M Hampel, M Huber, MM and S were used. Based on the results, the hybrid model of sparse regression for before, after, and modified heterogeneity robust regression with the 45 high ranking variables and a 2-sigma limit can be used efficiently and effectively to reduce the outliers. The obtained results confirm that the hybrid model of the modified sparse LASSO with the M Bi-Square estimator for the 45 high ranking parameters performed better compared with other existing methods.
Modified sparse regression to solve heterogeneity and hybrid models for increasing the prediction accuracy of seaweed big data with outliers.
阅读:7
作者:Ibidoja Olayemi Joshua, Shan Fam Pei, Ali Majid Khan Majahar
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Jul 30; 14(1):17599 |
| doi: | 10.1038/s41598-024-60612-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
