Antivirus applied to JAR malware detection based on runtime behaviors.

阅读:4
作者:Pinheiro Ricardo P, Lima Sidney M L, Souza Danilo M, Silva Sthéfano H M T, Lopes Petrônio G, de Lima Rafael D T, de Oliveira Jemerson R, Monteiro Thyago de A, Fernandes Sérgio M M, Albuquerque Edison de Q, Silva Washington W A da, Santos Wellington P Dos
Java vulnerabilities correspond to 91% of all exploits observed on the worldwide web. The present work aims to create antivirus software with machine learning and artificial intelligence and master in Java malware detection. Within the proposed methodology, the suspected JAR sample is executed to intentionally infect the Windows OS monitored in a controlled environment. In all, our antivirus monitors and considers, statistically, 6824 actions that the suspected JAR file can perform when executed. Our antivirus achieved an average performance of 91.58% in the distinction between benign and malware JAR files. Different initial conditions, learning functions and architectures of our antivirus are investigated. The limitations of commercial antiviruses can be supplied by intelligent antiviruses. Instead of blacklist-based models, our antivirus allows JAR malware detection preventively and not reactively as Oracle's Java and traditional antivirus modus operandi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。