Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target?

磷蛋白磷酸酶 2A 系统的调节及其在氧化应激过程中的调节:潜在的治疗靶点?

阅读:9
作者:I S Elgenaidi, J P Spiers

Abstract

Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。