A filamentous growth response mediated by the yeast mating pathway.

阅读:4
作者:Erdman S, Snyder M
Haploid cells of the budding yeast Saccharomyces cerevisiae respond to mating pheromones by arresting their cell-division cycle in G1 and differentiating into a cell type capable of locating and fusing with mating partners. Yeast cells undergo chemotactic cell surface growth when pheromones are present above a threshold level for morphogenesis; however, the morphogenetic responses of cells to levels of pheromone below this threshold have not been systematically explored. Here we show that MATa haploid cells exposed to low levels of the alpha-factor mating pheromone undergo a novel cellular response: cells modulate their division patterns and cell shape, forming colonies composed of filamentous chains of cells. Time-lapse analysis of filament formation shows that its dynamics are distinct from that of pseudohyphal growth; during pheromone-induced filament formation, daughter cells are delayed relative to mother cells with respect to the timing of bud emergence. Filament formation requires the RSR1(BUD1), BUD8, SLK1/BCK1, and SPA2 genes and many elements of the STE11/STE7 MAP kinase pathway; this response is also independent of FAR1, a gene involved in orienting cell polarization during the mating response. We suggest that mating yeast cells undergo a complex response to low levels of pheromone that may enhance the ability of cells to search for mating partners through the modification of cell shape and alteration of cell-division patterns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。