CRISPR/Cas9-mediated generic protein tagging in mammalian cells

CRISPR/Cas9 介导的哺乳动物细胞通用蛋白质标记

阅读:8
作者:Fabian M B Thöne, Nina S Kurrle, Harald von Melchner, Frank Schnütgen

Abstract

Systematic protein localization and protein-protein interaction studies to characterize specific protein functions are most effectively performed using tag-based assays. Ideally, protein tags are introduced into a gene of interest by homologous recombination to ensure expression from endogenous control elements. However, inefficient homologous recombination makes this approach difficult in mammalian cells. Although gene targeting efficiency by homologous recombination increased dramatically with the development of designer endonuclease systems such as CRISPR/Cas9 capable of inducing DNA double-strand breaks with unprecedented accuracy, the strategies still require synthesis or cloning of homology templates for every single gene. Recent developments have shown that endogenous protein tagging can be achieved efficiently in a homology independent manner. Hence, combinations between CRISPR/Cas9 and generic tag-donor plasmids have been used successfully for targeted gene modifications in mammalian cells. Here, we developed a tool kit comprising a CRISPR/Cas9 expression vector with several EGFP encoding plasmids that should enable tagging of almost every protein expressed in mammalian cells. By performing protein-protein interaction and subcellular localization studies of mTORC1 signal transduction pathway-related proteins expressed in HEK293T cells, we show that tagged proteins faithfully reflect the behavior of their native counterparts under physiological conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。