Distinct mechanisms for activation of Cl- and K+ currents by Ca2+ from different sources in mouse sympathetic neurones.

阅读:4
作者:Martínez-Pinna J, McLachlan E M, Gallego R
We have investigated the roles of different voltage-dependent Ca2+ channels in the activation of the Cl- and K+ channels responsible for the afterdepolarization (ADP) and slow afterhyperpolarization (AHP) in sympathetic neurones of the isolated mouse superior cervical ganglion in vitro. The ADP and its associated Ca2+-activated Cl- current were markedly decreased by omega-agatoxin IVA (40-200 nM) and nifedipine (1-10 microM), but not by omega-conotoxin GVIA (300 nM). In contrast, the AHP and the apamin-sensitive Ca2+-activated K+ current that underlies this potential were blocked by omega-conotoxin GVIA, but were not affected by omega-agatoxin IVA and were only slightly reduced by nifedipine. Ryanodine (20 microM) reduced the Ca2+-activated Cl- current following an action potential by 75% but on average did not affect the Ca2+-activated K+ current. Evidence that R-type channels provide a proportion of the Ca2+ activating both types of Ca2+-dependent channel was obtained. We conclude that Ca2+ entering through L- and P-type Ca2+ channels preferentially activates the Cl- current responsible for the ADP in mouse sympathetic neurones, predominantly via Ca2+-induced Ca2+ release, whereas the Ca2+ that activates the K+ channels responsible for the AHP enters predominantly through N-type channels. The data can be explained by the selective association of each type of Ca2+ channel with particular intracellular mechanisms for activating other membrane channels, one indirect and the other direct, probably located at discrete sites on the soma and dendrites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。