Effects of Decreasing Fishmeal as Main Source of Protein on Growth, Digestive Physiology, and Gut Microbiota of Olive Flounder (Paralichthys olivaceus).

阅读:5
作者:Seo Bong-Seung, Park Su-Jin, Hwang So-Yeon, Lee Ye-In, Lee Seung-Han, Hur Sang-Woo, Lee Kyeong-Jun, Nam Taek-Jeong, Song Jin-Woo, Kim Jae-Sig, Jang Won-Je, Choi Youn-Hee
In olive flounder (Paralichthys olivaceus), growth performance, expression of growth-related factors, digestive physiology, and gut microbiota were assessed under farm conditions in the fish fed diets with low levels of fishmeal. Four experimental diets were prepared, FM70 [control (CON), 70% fishmeal], FM45 (45% fishmeal), FM35A (35% fishmeal), and FM35B (35% fishmeal + insect meal), and fed to the fish for five months. The CON-fed fish had the highest plasma GH, but IGF-1 and hepatic IGF-1 mRNA expression of the olive flounder fed diets with low-fishmeal levels did not significantly differ among diets. The intestinal villus length, muscular thickness, and the number of goblet cells were statistically similar, and ocular examination of hepatopancreas showed no discernable difference in all experimental diets. The chymotrypsin content of FM35B-fed fish is significantly lower, but trypsin and lipase contents are similar. The diversity of gut microbiota did not differ among groups, although the FM35B group had a higher composition of Firmicutes. Thus, a diet with reduced fishmeal content and several alternative protein sources can be used as feed ingredients in feed formulation for olive flounder reared under typical aquaculture farm conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。