The opioid crisis is a pressing public health issue, exacerbated by the emergence of more potent synthetic opioids, particularly fentanyl and its analogs. While competitive antagonists exist, their efficacy against synthetic opioids is largely unknown. Furthermore, due to the short durations of action of current antagonists, renarcotization remains a concern. In this study, metabolic activity was characterized for fentanyl-class opioids and common opioid antagonists using multiple in vitro systems, namely, cytochrome P450 (CYP) enzymes and hepatic spheroids, after which an in vitro-in vivo correlation was applied to convert in vitro metabolic activity to predictive in vivo intrinsic clearance. For all substrates, intrinsic hepatic metabolism was higher than the composite of CYP activities, due to fundamental differences between whole cells and single enzymatic reactions. Of the CYP isozymes investigated, 3A4 yielded the highest absolute and relative metabolism across all substrates, with largely negligible contributions from 2D6 and 2C19. Comparative analysis highlighted elevated lipophilicity and diminished CYP3A4 activity as potential considerations for the development of more efficacious opioid antagonists. Finally, antagonists with a high degree of molecular similarity exhibited comparable clearance, providing a basis for structure-metabolism relationships. Together, these results provide multiple screening criteria for early stage drug discovery involving opioid countermeasures.
Metabolic clearance of select opioids and opioid antagonists using hepatic spheroids and recombinant cytochrome P450 enzymes.
阅读:4
作者:Tuet Wing Y, Pierce Samuel A, Conroy Matthieu, Vignola Justin N, Tressler Justin, diTargiani Robert C, McCranor Bryan J, Wong Benjamin
| 期刊: | Pharmacology Research & Perspectives | 影响因子: | 2.300 |
| 时间: | 2022 | 起止号: | 2022 Oct;10(5):e01000 |
| doi: | 10.1002/prp2.1000 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
