Hybrid metapopulation agent-based epidemiological models for efficient insight on the individual scale: A contribution to green computing.

阅读:12
作者:Bicker Julia, Schmieding René, Meyer-Hermann Michael, Kühn Martin J
Emerging infectious diseases and climate change are two of the major challenges in 21st century. Although over the past decades, highly-resolved mathematical models have contributed in understanding dynamics of infectious diseases and are of great aid when it comes to finding suitable intervention measures, they may need substantial computational effort and produce significant CO(2) emissions. Two popular modeling approaches for mitigating infectious disease dynamics are agent-based and population-based models. Agent-based models (ABMs) offer a microscopic view and are thus able to capture heterogeneous human contact behavior and mobility patterns. However, insights on individual-level dynamics come with high computational effort that scales with the number of agents. On the other hand, population-based models (PBMs) using e.g. ordinary differential equations (ODEs) are computationally efficient even for large populations due to their complexity being independent of the population size. Yet, population-based models are restricted in their granularity as they assume a (to some extent) homogeneous and well-mixed population. To manage the trade-off between computational complexity and level of detail, we propose spatial- and temporal-hybrid models that use ABMs only in an area or time frame of interest. To account for relevant influences to disease dynamics, e.g., from outside, due to commuting activities, we use population-based models, only adding moderate computational costs. Our hybridization approach demonstrates significant reduction in computational effort by up to 98% - without losing the required depth in information in the focus frame. The hybrid models used in our numerical simulations are based on two recently proposed models, however, any suitable combination of ABM and PBM could be used, too. Concluding, hybrid epidemiological models can provide insights on the individual scale where necessary, using aggregated models where possible, thereby making a contribution to green computing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。