Improved Shear Strength Prediction Model of Steel Fiber Reinforced Concrete Beams by Adopting Gene Expression Programming.

阅读:5
作者:Tariq Moiz, Khan Azam, Ullah Asad, Shayanfar Javad, Niaz Momina
In this study, an artificial intelligence tool called gene expression programming (GEP) has been successfully applied to develop an empirical model that can predict the shear strength of steel fiber reinforced concrete beams. The proposed genetic model incorporates all the influencing parameters such as the geometric properties of the beam, the concrete compressive strength, the shear span-to-depth ratio, and the mechanical and material properties of steel fiber. Existing empirical models ignore the tensile strength of steel fibers, which exercise a strong influence on the crack propagation of concrete matrix, thereby affecting the beam shear strength. To overcome this limitation, an improved and robust empirical model is proposed herein that incorporates the fiber tensile strength along with the other influencing factors. For this purpose, an extensive experimental database subjected to four-point loading is constructed comprising results of 488 tests drawn from the literature. The data are divided based on different shapes (hooked or straight fiber) and the tensile strength of steel fiber. The empirical model is developed using this experimental database and statistically compared with previously established empirical equations. This comparison indicates that the proposed model shows significant improvement in predicting the shear strength of steel fiber reinforced concrete beams, thus substantiating the important role of fiber tensile strength.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。