Construction of heparan sulfate microarray for investigating the binding of specific saccharide sequences to proteins

构建硫酸乙酰肝素微阵列用于研究特定糖序列与蛋白质的结合

阅读:5
作者:Maurice Horton, Guowei Su, Lin Yi, Zhangjie Wang, Yongmei Xu, Vijayakanth Pagadala, Fuming Zhang, David A Zaharoff, Ken Pearce, Robert J Linhardt, Jian Liu

Abstract

Heparan sulfate (HS) is a heterogeneous, extracellular glycan that interacts with proteins and other molecules affecting many biological processes. The specific binding motifs of HS interactions are of interest, but have not been extensively characterized. Glycan microarrays are valuable tools that can be used to probe the interactions between glycans and their ligands while relying on relatively small amounts of samples. Recently, chemoenzymatic synthesis of HS has been employed to produce specific HS structures that can otherwise be difficult to produce. In this study, a microarray of diverse chemoenzymatically synthesized HS structures was developed and HS interactions were characterized. Fluorescently labeled antithrombin III (AT) and fibroblast growth factor-2 (FGF2) were screened against 95 different HS structures under three different printing concentrations to confirm the utility of this microarray. Specific sulfation patterns were found to be important for binding to these proteins and results are consistent with previous specificity studies. Furthermore, the binding affinities (KD,surf) of AT and FGF2 to multiple HS structures were determined using a microarray technique and is consistent with previous reports. Lastly, the 95-compound HS microarray was used to determine the distinct binding profiles for interleukin 12 and platelet factor 4. This technique is ideal for rapid expansion and will be pivotal to the high-throughput characterization of biologically important structure/function relationships.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。