Titania and doped-titania coatings can be deposited by a wide range of techniques; this paper will concentrate on magnetron sputtering techniques, including "conventional" reactive co-sputtering from multiple metal targets and the recently introduced high power impulse magnetron sputtering (HiPIMS). The latter has been shown to deliver a relatively low thermal flux to the substrate, whilst still allowing the direct deposition of crystalline titania coatings and, therefore, offers the potential to deposit photocatalytically active titania coatings directly onto thermally sensitive substrates. The deposition of coatings via these techniques will be discussed, as will the characterisation of the coatings by XRD, SEM, EDX, optical spectroscopy, etc. The assessment of photocatalytic activity and photoactivity through the decomposition of an organic dye (methylene blue), the inactivation of E. coli microorganisms and the measurement of water contact angles will be described. The impact of different deposition technologies, doping and co-doping strategies on coating structure and activity will be also considered.
Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings.
阅读:4
作者:Kelly Peter J, West Glen T, Ratova Marina, Fisher Leanne, Ostovarpour Soheyla, Verran Joanna
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2014 | 起止号: | 2014 Oct 13; 19(10):16327-48 |
| doi: | 10.3390/molecules191016327 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
