Photocatalytic Hydrogen Evolution of TiZrNbHfTaO(x) High-Entropy Oxide Synthesized by Mechano-Thermal Method.

阅读:7
作者:Güler Ömer, Boyrazlı Mustafa, Albayrak Muhammet Gökhan, Güler Seval Hale, Ishihara Tatsumi, Edalati Kaveh
One of the most promising solutions to slow down CO(2) emissions is the use of photocatalysis to produce hydrogen as a clean fuel. However, the efficiency of the photocatalysts is not at the desired level, and they usually need precious metal co-catalysts for reactions. In this study, to achieve efficient photocatalytic hydrogen production, a high-entropy oxide was synthesized by a mechano-thermal method. The synthesized high-entropy oxide had a bandgap of 2.45 eV, which coincided with both UV and visible light regions. The material could successfully produce hydrogen from water under light, but the main difference to conventional photocatalysts was that the photocatalysis proceeded without a co-catalyst addition. Hydrogen production increased with increasing time, and at the end of the 3 h period, 134.76 µmol/m(2) h of hydrogen was produced. These findings not only introduce a new method for producing high-entropy photocatalysts but also confirm the high potential of high-entropy photocatalysts for hydrogen production without the need for precious metal co-catalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。