INTRODUCTION: Cervical cancer, which includes squamous cell carcinoma and adenocarcinoma, is a leading cause of cancer-related deaths globally, particularly in low- and middle-income countries (LMICs). It is preventable through early screening, but incidence and mortality rates are significantly higher in LMICs, with 94% of deaths occurring in these regions. Poor implementation of screening programs, in addition to multiple health system barriers, leads to a high burden from cervical cancer in these countries. Projections show increasing cases and deaths due to the disease by 2030. Using machine learning instead of the usual statistical tests will incorporate the complex and non-linear relationship of factors in predicting the outcome variable. METHOD: The secondary data for ten Sub-Saharan African countries were utilized from the Demographic and Health Survey, DHS, to evaluate cervical cancer screening uptake among women aged 25-49 years. During cleaning missing values and outliers were removed. Class balancing by Synthetic minority oversampling techniques (SMOT) was done and tuning hyperparameters via grid search was used in the models before splitting into training and validation sets containing 89% and 20%, respectively. The following machine learning classification algorithms were used in the study: Logistic Regression, Decision Tree Classifier, Random Forest, K-Nearest Neighbor, Gradient Boosting, AdaBoost, and Extra Trees. These algorithms were employed to predict cervical cancer screening uptake. The performance of the models was evaluated using accuracy, precision, recall, and F1 score. RESULT: In this study, a cervical cancer screening uptake was predicted among 75,360 weighted samples of women from an African country, aged 25-49 with the final data for model formulation of 53,461, where the Extra Trees Classifier obtained an accuracy of 94.13%, a precision of 95.76%, recall of 94.12%, F1-score of 93.80%. Then followed Random Forest: accuracyâ=â93.87, precisionâ=â99.18%. Health visits, proximity to health care, using contraceptives, residing in urban settings, and exposure to media were its most crucial predictors. The ensemble methods, such as Extra Trees and Random Forest, showed the best generalization, indicating that this work well on complex datasets and can help devise targeted intervention strategies. CONCLUSION: This study demonstrates that the ensemble machine learning models, such as Extra Trees Classifier and Random Forest, are promising in predicting cervical cancer screening uptake among African women with accuracies of 94.13% and 93.87%, respectively. Key predictors include healthcare access, sociocultural factors, media exposure, residence in urban areas, and contraceptive use. The findings emphasize the need for a reduction in care barriers and the use of family planning visits and mass media in promoting screening. These results will be validated in different populations in order to find the clinical integration via decision support systems.
Cervical cancer screening uptake and its associated factor in Sub-Sharan Africa: a machine learning approach.
阅读:6
作者:Arage Fetlework Gubena, Tadese Zinabu Bekele, Taye Eliyas Addisu, Tsegaw Tigist Kifle, Abate Tsegasilassie Gebremariam, Alemu Eyob Akalewold
| 期刊: | BMC Medical Informatics and Decision Making | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 May 26; 25(1):197 |
| doi: | 10.1186/s12911-025-03039-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
