Degradation Modeling and RUL Prediction of Hot Rolling Work Rolls Based on Improved Wiener Process.

阅读:4
作者:Yan Xuguo, Zhou Shiyang, Zhang Huan, Yi Cancan
Hot rolling work rolls are essential components in the hot rolling process. However, they are subjected to high temperatures, alternating stress, and wear under prolonged and complex working conditions. Due to these factors, the surface of the work rolls gradually degrades, which significantly impacts the quality of the final product. This paper presents an improved degradation model based on the Wiener process for predicting the remaining useful life (RUL) of hot rolling work rolls, addressing the critical need for accurate and reliable RUL estimation to optimize maintenance strategies and ensure operational efficiency in industrial settings. The proposed model integrates pulsed eddy current testing with VMD-Hilbert feature extraction and incorporates a Gaussian kernel into the standard Wiener process to effectively capture complex degradation paths. A Bayesian framework is employed for parameter estimation, enhancing the model's adaptability in real-time prediction scenarios. The experimental results validate the superiority of the proposed method, demonstrating reductions in RMSE by approximately 85.47% and 41.20% compared to the exponential Wiener process and the RVM model based on a Gaussian kernel, respectively, along with improvements in the coefficient of determination (CD) by 121% and 19.76%. Additionally, the model achieves reductions in MAE by 85.66% and 42.61%, confirming its enhanced predictive accuracy and robustness. Compared to other algorithms from the related literature, the proposed model consistently delivers higher prediction accuracy, with most RUL predictions falling within the 20% confidence interval. These findings highlight the model's potential as a reliable tool for real-time RUL prediction in industrial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。