Piperazine amides with desirable solubility, physicochemical and drug-like properties: Synthesis and evaluation of the anti-Trypanosoma cruzi activity.

阅读:7
作者:Varela Marina T, Romanelli Maiara, Amaral Maiara, Tempone Andre G, Fernandes João Paulo S
The absence of effective chronic treatment, expansion to non-endemic countries and the significant burden in public health have stimulated the search for novel therapeutic options to treat Chagas disease, a protozoan disease caused by Trypanosoma cruzi. Despite current efforts, no new drug candidates were approved in clinical trials in the past five decades. Considering this, our group has focused on the expansion of a series (LINS03) with low micromolar activity against amastigotes, considering the optimization of pharmacokinetic properties through increasing drug-likeness and solubility. In this work, we report a new set of 13 compounds with modifications in both the arylpiperazine and the aromatic region linked by an amide group. Five analogues showed activity against intracellular amastigotes (IC(50) 17.8 to 35.9 µM) and no relevant cytotoxicity to mammalian cells (CC(50) > 200 µM). Principal component analysis (PCA) was performed to identify structural features associated to improved activity. The data revealed that polarity, hydrogen bonding ability and flexibility were key properties that influenced the antiparasitic activity. In silico drug-likeness assessments indicated that compounds with the 4-methoxycinammyl (especially compound 2b) had the most prominent balance between properties and activity in the series, as confirmed by SAR analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。