IBGJO: Improved Binary Golden Jackal Optimization with Chaotic Tent Map and Cosine Similarity for Feature Selection.

阅读:3
作者:Zhang Kunpeng, Liu Yanheng, Mei Fang, Sun Geng, Jin Jingyi
Feature selection is a crucial process in machine learning and data mining that identifies the most pertinent and valuable features in a dataset. It enhances the efficacy and precision of predictive models by efficiently reducing the number of features. This reduction improves classification accuracy, lessens the computational burden, and enhances overall performance. This study proposes the improved binary golden jackal optimization (IBGJO) algorithm, an extension of the conventional golden jackal optimization (GJO) algorithm. IBGJO serves as a search strategy for wrapper-based feature selection. It comprises three key factors: a population initialization process with a chaotic tent map (CTM) mechanism that enhances exploitation abilities and guarantees population diversity, an adaptive position update mechanism using cosine similarity to prevent premature convergence, and a binary mechanism well-suited for binary feature selection problems. We evaluated IBGJO on 28 classical datasets from the UC Irvine Machine Learning Repository. The results show that the CTM mechanism and the position update strategy based on cosine similarity proposed in IBGJO can significantly improve the Rate of convergence of the conventional GJO algorithm, and the accuracy is also significantly better than other algorithms. Additionally, we evaluate the effectiveness and performance of the enhanced factors. Our empirical results show that the proposed CTM mechanism and the position update strategy based on cosine similarity can help the conventional GJO algorithm converge faster.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。