Gram-negative pathogens expressing serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), especially those with carbapenemase activity, threaten the clinical utility of almost all β-lactam antibiotics. Here we describe the discovery of a heteroaryl phosphonate scaffold that exhibits noncovalent cross-class inhibition of representative carbapenemases, specifically the SBL KPC-2 and the MBLs NDM-1 and VIM-2. The most potent lead, compound 16, exhibited low nM to low μM inhibition of KPC-2, NDM-1, and VIM-2. Compound 16 potentiated imipenem efficacy against resistant clinical and laboratory bacterial strains expressing carbapenemases while showing some cytotoxicity toward human HEK293T cells only at concentrations above 100 μg/mL. Complex structures with KPC-2, NDM-1, and VIM-2 demonstrate how these inhibitors achieve high binding affinity to both enzyme classes. These findings provide a structurally and mechanistically new scaffold for drug discovery targeting multidrug resistant Gram-negative pathogens and more generally highlight the active site features of carbapenemases that can be leveraged for lead discovery.
Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine- and Metallocarbapenemases.
阅读:3
作者:Pemberton Orville A, Jaishankar Priyadarshini, Akhtar Afroza, Adams Jessie L, Shaw Lindsey N, Renslo Adam R, Chen Yu
| 期刊: | Journal of Medicinal Chemistry | 影响因子: | 6.800 |
| 时间: | 2019 | 起止号: | 2019 Sep 26; 62(18):8480-8496 |
| doi: | 10.1021/acs.jmedchem.9b00728 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
