Transferring traditional plasmonic noble metal nanomaterials from the laboratory to industrial production has remained challenging due to the high price of noble metals. The development of cost-effective non-noble-metal alternatives with outstanding plasmonic properties has therefore become essential. Herein, we report on the gram-scale production of differently shaped TiN nanoparticles with strong plasmon-enabled broadband light absorption, including differently sized TiN nanospheres, nanobipyramids, and nanorod arrays. The TiN nanospheres and nanobipyramids are further coembedded in highly porous poly(vinyl alcohol) films to function as a photothermal material for solar seawater desalination. A seawater evaporation rate of 3.8 kg m(-2) h(-1) is achieved, which marks the record performance among all plasmonic solar seawater desalination systems reported so far. The removal percentage of phenol reaches 98.3%, which is attributed to the joint action of the excellent photocatalytic ability and the superhydrophilicity of the porous TiN-based composite film.
Colloidal Plasmonic TiN Nanoparticles for Efficient Solar Seawater Desalination.
阅读:3
作者:Bai Xiaopeng, Lam Shiu Hei, Hu Jingtian, Chui Ka Kit, Zhu Xiao-Ming, Shao Lei, Chow Tsz Him, Wang Jianfang
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2023 | 起止号: | 2023 Dec 6; 15(48):55856-55869 |
| doi: | 10.1021/acsami.3c13479 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
