Bayesian surprise attracts human attention.

阅读:4
作者:Itti Laurent, Baldi Pierre
We propose a formal Bayesian definition of surprise to capture subjective aspects of sensory information. Surprise measures how data affects an observer, in terms of differences between posterior and prior beliefs about the world. Only data observations which substantially affect the observer's beliefs yield surprise, irrespectively of how rare or informative in Shannon's sense these observations are. We test the framework by quantifying the extent to which humans may orient attention and gaze towards surprising events or items while watching television. To this end, we implement a simple computational model where a low-level, sensory form of surprise is computed by simple simulated early visual neurons. Bayesian surprise is a strong attractor of human attention, with 72% of all gaze shifts directed towards locations more surprising than the average, a figure rising to 84% when focusing the analysis onto regions simultaneously selected by all observers. The proposed theory of surprise is applicable across different spatio-temporal scales, modalities, and levels of abstraction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。