Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions

能够在特定条件下维持和定向分化多能干细胞的三维系统

阅读:11
作者:Denise Zujur, Kosuke Kanke, Alexander C Lichtler, Hironori Hojo, Ung-Il Chung, Shinsuke Ohba

Abstract

The development of in vitro models for the maintenance and differentiation of pluripotent stem cells (PSCs) is an active area of stem cell research. The strategies used so far are based mainly on two-dimensional (2D) cultures, in which cellular phenotypes are regulated by soluble factors. We show that a 3D culture system with atelocollagen porous scaffolds can significantly improve the outcome of the current platforms intended for the maintenance and lineage specification of mouse PSCs (mPSCs). Unlike 2D conditions, the 3D conditions maintained the undifferentiated state of mouse embryonic stem cells (mESCs) without exogenous stimulation and also supported endoderm, mesoderm, and ectoderm differentiation of mESCs under serum-free conditions. Moreover, 3D mPSC-derived mesodermal cells showed accelerated osteogenic differentiation, giving rise to functional osteoblast-osteocyte populations within calcified structures. The present strategy offers a 3D platform suitable for the formation of organoids that mimic in vivo organs containing various cell types, and it may be adaptable to the generation of ectoderm-, mesoderm-, and endoderm-derived tissues when combined with appropriate differentiation treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。