The surface molecular functionality of decellularized extracellular matrices.

阅读:5
作者:Barnes Christopher A, Brison Jeremy, Michel Roger, Brown Bryan N, Castner David G, Badylak Stephen F, Ratner Buddy D
Decellularization of tissues and organs is a successful platform technology for creating scaffolding materials for tissue engineering and regenerative medicine. It has been suggested that the success of these materials upon implantation is due to the molecular signals provided by the remaining scaffold extracellular matrix (ECM) components presented to probing cells in vivo as they repopulate the surface. For this study, decellularized matrices were created from esophagus, bladder, and small intestine harvested from adult male Fischer 344 rats. The three decellularized matrices (each originating from source tissues which included an epithelial lining on their luminal surfaces) were immunostained for collagen IV and laminin to determine basement membrane retention. Scanning electron micrographs of the surfaces were used to provide insight into the surface topography of each of the decellularized tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to generate high-resolution mass spectra for the surfaces of each scaffold. This surface-sensitive technique allows for detailed molecular analysis of the outermost 1-2 nm of a material and has been applied previously to thin protein films and secreted ECM proteins on poly(N-isopropyl acrylamide) (polyNIPAAM) surfaces. To extract trends from within the complex ToF-SIMS dataset, a multivariate analysis technique, principal component analysis (PCA), was employed. Using this method, a molecular fingerprint of each surface was created and separation was seen in the PCA scores between the decellularized esophagus and the decellularized small intestine samples. The PCA scores for the decellularized bladder sample fell between the previous two decellularized samples. Protein films of common extracellular matrix constituents (collagen IV, collagen I, laminin, and Matrigel) were also investigated. The PCA results from these protein films were used to develop qualitative hypotheses for the relationship of the key fragments identified from the PCA of the decellularized ECMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。