(R)-α-Lipoic acid treatment restores ceramide balance in aging rat cardiac mitochondria.

阅读:3
作者:Monette Jeffrey S, Gómez Luis A, Moreau Régis F, Dunn Kevin C, Butler Judy A, Finlay Liam A, Michels Alexander J, Shay Kate Petersen, Smith Eric J, Hagen Tory M
Inflammation results in heightened mitochondrial ceramide levels, which cause electron transport chain dysfunction, elevates reactive oxygen species, and increases apoptosis. As mitochondria in aged hearts also display many of these characteristics, we hypothesized that mitochondrial decay stems partly from an age-related ceramidosis that heretofore has not been recognized for the heart. Intact mitochondria or their purified inner membranes (IMM) were isolated from young (4-6 mo) and old (26-28 mo) rats and analyzed for ceramides by LC-MS/MS. Results showed that ceramide levels increased by 32% with age and three ceramide isoforms, found primarily in the IMM (e.g. C(16)-, C(18)-, and C(24:1)-ceramide), caused this increase. The ceramidosis may stem from enhanced hydrolysis of sphingomyelin, as neutral sphingomyelinase (nSMase) activity doubled with age but with no attendant change in ceramidase activity. Because (R)-α-lipoic acid (LA) improves many parameters of cardiac mitochondrial decay in aging and lowers ceramide levels in vascular endothelial cells, we hypothesized that LA may limit cardiac ceramidosis and thereby improve mitochondrial function. Feeding LA [0.2%, w/w] to old rats for two weeks prior to mitochondrial isolation reversed the age-associated decline in glutathione levels and concomitantly improved Complex IV activity. This improvement was associated with lower nSMase activity and a remediation in mitochondrial ceramide levels. In summary, LA treatment lowers ceramide levels to that seen in young rat heart mitochondria and restores Complex IV activity which otherwise declines with age.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。