INTRODUCTION: The Gross-Pitaevskii equation is a class of the nonlinear Schrödinger equation, whose exact solution, especially soliton solution, is proposed for understanding and studying Bose-Einstein condensate and some nonlinear phenomena occurring in the intersection field of Bose-Einstein condensate with some other fields. It is an important subject to investigate their exact solutions. OBJECTIVES: We give multi-soliton of a two-dimensional Gross-Pitaevskii system which contains the time-varying trapping potential with a few interactions of multi-soliton. Through analytical and graphical analysis, we obtain one-, two- and three-soliton which are affected by the strength of atomic interaction. The asymptotic expression of two-soliton embodies the properties of solitons. We can give some interactions of solitons of different structures including parabolic soliton, line-soliton and dromion-like structure. METHODS: By constructing an appropriate Hirota bilinear form, the multi-soliton solution of the system is obtained. The soliton elastic interaction is analyzed via asymptotic analysis. RESULTS: The results in this paper theoretically provide the analytical bright soliton solution in the two-dimensional Bose-Einstein condensation model and their interesting interaction. To our best knowledge, the discussion and results in this work are new and important in different fields. CONCLUSIONS: The study enriches the existing nonlinear phenomena of the Gross-Pitaevskii model in Bose-Einstein condensation, and prove that the Hirota bilinear method and asymptotic analysis method are powerful and effective techniques in physical sciences and engineering for analyzing nonlinear mathematical-physical equations and their solutions. These provide a valuable basis and reference for the controllability of bright soliton phenomenon in experiments for high-dimensional Bose-Einstein condensation.
Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation.
阅读:4
作者:Wang Haotian, Zhou Qin, Liu Wenjun
| 期刊: | Journal of Advanced Research | 影响因子: | 13.000 |
| 时间: | 2022 | 起止号: | 2021 Sep 20; 38:179-190 |
| doi: | 10.1016/j.jare.2021.09.007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
