Previous research has demonstrated that the spinal cord is capable of a simple form of instrumental learning. Spinally transected rats that receive shock to a hind leg in an extended position quickly learn to maintain the leg in a flexed position, reducing net shock exposure whenever that leg is flexed. Subjects that receive shock independent of leg position (uncontrollable shock) do not exhibit an increase in flexion duration and later fail to learn when tested with controllable shock (learning deficit). The present study examined the role of the ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in spinal learning. Intrathecal application of the AMPA receptor antagonist CNQX disrupted performance of a spinal instrumental learning in a dose dependent fashion (Experiment 1). CNQX also disrupted the maintenance of the instrumental response (Experiment 2) and blocked the induction of the learning deficit (Experiment 3). Intrathecal application of the agonist AMPA had a non-monotonic effect, producing a slight facilitation of performance at a low dose and disrupting learning at a high concentration (Experiment 4). Within the dose range tested, intrathecal application of AMPA did not have a long-term effect (Experiment 5). The results suggest that AMPA-mediated transmission plays an essential role in both instrumental learning and the induction of the learning deficit.
AMPA receptor mediated behavioral plasticity in the isolated rat spinal cord.
阅读:5
作者:Hoy Kevin C, Huie J Russell, Grau James W
| 期刊: | Behavioural Brain Research | 影响因子: | 2.300 |
| 时间: | 2013 | 起止号: | 2013 Jan 1; 236(1):319-326 |
| doi: | 10.1016/j.bbr.2012.09.007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
