The mRNA encoding a putative human enzyme named Epidermal Retinol Dehydrogenase 2 (RDH-E2) was found to be significantly elevated in psoriatic skin [Y. Matsuzaka, K. Okamoto, H. Tsuji, T. Mabuchi, A. Ozawa, G. Tamiya, H. Inoko, Identification of the hRDH-E2 gene, a novel member of the SDR family, and its increased expression in psoriatic lesion, Biochem. Biophys. Res. Commun. 297 (2002) 1171-1180]. This finding led the authors to propose that RDH-E2 may be involved in the pathogenesis of psoriasis through its potential role in retinoic acid biosynthesis and stimulation of keratinocyte proliferation. However, enzymatic activity for RDH-E2 has never been demonstrated. RDH-E2 is a member of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins, and is most closely related to the group of SDRs comprised of both NAD(+)- and NADP(+)-dependent enzymes with activities toward retinoid and steroid substrates. In this study, we began the characterization of RDH-E2 protein in order to determine whether it might play a role in retinoic acid biosynthesis. The results of this study show that, similarly to other SDR-type retinol dehydrogenases, RDH-E2 appears to be associated with the membranes of endoplasmic reticulum. Furthermore, RDH-E2 expressed in Sf9 insect cells as a fusion to the C-terminal His(6)-tag and purified using Ni(2+)-affinity chromatography recognizes all-trans-retinol and all-trans-retinaldehyde as substrates and exhibits a strong preference for NAD(+)/NADH as cofactors. Specific activity of RDH-E2 toward all-trans-retinoids is much lower than that of other retinoid-active SDRs, such as human RoDH4 or RDH10. The preference for NAD(+) suggests that RDH-E2 is likely to function in the oxidative direction in vivo, further supporting its potential role in the oxidation of retinol to retinaldehyde for retinoic acid biosynthesis in human keratinocytes.
Biochemical characterization of human epidermal retinol dehydrogenase 2.
阅读:8
作者:Lee Seung-Ah, Belyaeva Olga V, Kedishvili Natalia Y
| 期刊: | Chemico-Biological Interactions | 影响因子: | 5.400 |
| 时间: | 2009 | 起止号: | 2009 Mar 16; 178(1-3):182-7 |
| doi: | 10.1016/j.cbi.2008.09.019 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
