Interaction of heparins and dextran sulfates with a mesoscopic protein nanopore.

阅读:3
作者:Teixeira Luciana R, Merzlyak Petr G, Valeva Angela, Krasilnikov Oleg V
A mechanism of how polyanions influence the channel formed by Staphylococcus aureus alpha-hemolysin is described. We demonstrate that the probability of several types of polyanions to block the ion channel depends on the presence of divalent cations and the polyanion molecular weight and concentration. For heparins, a 10-fold increase in molecular weight decreases the half-maximal inhibitory concentration, IC(50), nearly 10(4)-fold. Dextran sulfates were less effective at blocking the channel. The polyanions are significantly more effective at reducing the conductance when added to the trans side of this channel. Lastly, the effectiveness of heparins on the channel conductance correlated with their influence on the zeta-potential of liposomes. A model that includes the binding of polyanions to the channel-membrane complex via Ca(2+)-bridges and the asymmetry of the channel structure describes the data adequately. Analysis of the single channel current noise of wild-type and site-directed mutant versions of alpha-hemolysin channels suggests that a single polyanion enters the pore due to electrostatic forces and physically blocks the ion conduction path. The results might be of interest for pharmacology, biomedicine, and research aiming to design mesoscopic pore blockers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。