Sound generation in human phonation and the underlying fluid-structure-acoustic interaction that describes the sound production mechanism are not fully understood. A previous experimental study, with a silicone made vocal fold model connected to a straight vocal tract pipe of fixed length, showed that vibroacoustic coupling can cause a deviation in the vocal fold vibration frequency. This occurred when the fundamental frequency of the vocal fold motion was close to the lowest acoustic resonance frequency of the pipe. What is not fully understood is how the vibroacoustic coupling is influenced by a varying vocal tract length. Presuming that this effect is a pure coupling of the acoustical effects, a numerical simulation model is established based on the computation of the mechanical-acoustic eigenvalue. With varying pipe lengths, the lowest acoustic resonance frequency was adjusted in the experiments and so in the simulation setup. In doing so, the evolution of the vocal folds' coupled eigenvalues and eigenmodes is investigated, which confirms the experimental findings. Finally, it was shown that for normal phonation conditions, the mechanical mode is the most efficient vibration pattern whenever the acoustic resonance of the pipe (lowest formant) is far away from the vocal folds' vibration frequency. Whenever the lowest formant is slightly lower than the mechanical vocal fold eigenfrequency, the coupled vocal fold motion pattern at the formant frequency dominates.
On the Alignment of Acoustic and Coupled Mechanic-Acoustic Eigenmodes in Phonation by Supraglottal Duct Variations.
阅读:3
作者:Kraxberger Florian, Näger Christoph, Laudato Marco, Sundström Elias, Becker Stefan, Mihaescu Mihai, Kniesburges Stefan, Schoder Stefan
| 期刊: | Bioengineering-Basel | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Nov 28; 10(12):1369 |
| doi: | 10.3390/bioengineering10121369 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
