Activity of primate V1 neurons during the gap saccade task.

阅读:3
作者:Kim Kayeon, Lee Choongkil
When a saccadic eye movement is made toward a visual stimulus, the variability in accompanying primary visual cortex (V1) activity is related to saccade latency in both humans and simians. To understand the nature of this relationship, we examined the functional link between V1 activity and the initiation of visually guided saccades during the gap saccade task, in which a brief temporal gap is inserted between the turning off of a fixation stimulus and the appearance of a saccadic target. The insertion of such a gap robustly reduces saccade latency and facilitates the occurrence of extremely short-latency (express) saccades. Here we recorded single-cell activity from macaque V1 while monkeys performed the gap saccade task. In parallel with the gap effect on saccade latency the neural latency (time of first spike) of V1 response elicited by the saccade target became shorter, and the firing rate increased as the gap duration increased. Similarly, neural latency was shorter and firing rate was higher before express saccades relative to regular-latency saccades. In addition to these posttarget changes, the level of spontaneous spike activity during the pretarget period was negatively correlated with both neural and saccade latencies. These results demonstrate that V1 activity correlates with the gap effect and indicate that trial-to-trial variability in the state of V1 accompanies the variability of neural and behavioral latencies.NEW & NOTEWORTHY The link between neural activity in monkey primary visual cortex (V1) and visually guided behavioral response is confirmed with the gap saccade paradigm. Results indicated that the variability in neural latency of V1 spike activity correlates with the gap effect on saccade latency and that the trial-to-trial variability in the state of V1 before the onset of saccade target correlates with the variability in neural and behavioral latencies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。