EGFR variant-mediated invasion by enhanced CXCR4 expression through transcriptional and post-translational mechanisms

EGFR 变异体通过转录和翻译后机制增强 CXCR4 表达,从而介导侵袭

阅读:7
作者:Massod Rahimi, Jessica George, Careen Tang

Abstract

The expression of the potent, constitutively activated EGFR variant, EGFRvIII, has been linked to breast cancer metastasis, but the mechanisms of EGFRvIII and CXCR4 crosstalk, which may facilitate breast cancer invasion, have never been explored. Here we report that CXCR4 expression is increased in breast cancer cells expressing EGFRvIII regardless of the ER/PgR status of the cells. Treatment of EGFRvIII-expressing breast cancer cells with the tyrosine kinase inhibitor, AG1478, reverses CXCR4 expression back to levels expressed in parental cells. In addition, expressing EGFRvIII enhances CXCL12/CXCR4-mediated invasion, which can be inhibited by CXCR4 inhibitors. Surprisingly, CXCR4 mRNA and its transcriptional regulator, HIF-1alpha, are up-regulated only in ER+/PgR+ estrogen-dependent EGFRvIII-expressing breast cancer cells, but not in ER-/PgR- or estrogen-independent cell lines, suggesting that HIF-1alpha and hormone receptor-mediated actions may have a role in the transcriptional regulation of CXCR4. We also demonstrate that p38 MAPK is one of the major down-stream signaling molecules responsible for EGFRvIII/CXCR4-mediated invasion as p38 MAPK activity was induced by CXCL12 stimulation under both normoxic and hypoxic conditions. More interestingly, inhibition of p38 MAPK activity significantly reduced CXCR4 expression and inhibited the invasive potential of EGFRvIII-expressing breast cancer cells, suggesting an essential role for p38 MAPK in EGFRvIII/CXCR4 induced invasion. Furthermore, CXCR4 is regulated post-translationally through decreased expression of AIP4 and beta-arrestin 1/2, molecules involved in CXCR4 internalization, cellular trafficking and degradation. These results provide a plausible mechanism for EGFRvIII-mediated invasion and establish a functional link between EGFRvIII and CXCR4 signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。