In order to protect human health from the adverse impacts of acrylamide and acetone, simple analytical processes are required to detect low concentrations of acrylamide and acetone. Dual functional garlic-capped silver nanoparticles (G-Ag NPs) have been used as fluorescent sensors for acrylamide and acetone. This technique depends on the quenching of the photoluminescence (PL) intensity of G-Ag NPs with the interaction of either acrylamide or acetone. This fluorescent probe presented high selectivity toward acrylamide with a wide linear response of 0.01-6 mM with a limit of detection (LOD) of 2.9 μM. Moreover, this probe also acted as a selective and sensitive fluorescent sensor for the detection of acetone in the range of 0.1-17 mM with LOD of 55 μM. The applicability of G-Ag NPs as a proposed sensor for acrylamide was evaluated using a potato chips sample with a recovery percentage of 102.4%. Acetone concentration is also quantified in human urine samples and the recoveries ranged from 98.8 to 101.7%. Repeatability and reproducibility studies for acrylamide and acetone offered relative standard deviation (RSD) of 0.9% and 1.5%, and 0.77% and 1.1%, respectively.
Fluorescent garlic-capped Ag nanoparticles as dual sensors for the detection of acetone and acrylamide.
阅读:4
作者:El-Naka Marwa Ahmed, El-Dissouky A, Ali G Y, Ebrahim Shaker, Shokry Azza
| 期刊: | RSC Advances | 影响因子: | 4.600 |
| 时间: | 2022 | 起止号: | 2022 Nov 28; 12(52):34095-34106 |
| doi: | 10.1039/d2ra06789g | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
