Stainless-steel elements are increasingly used in a wide range of load-bearing structures due to their strength, minimal maintenance requirements, and aesthetic appearance. Their response differs from standard steels; therefore, it is necessary to choose a different procedure when creating a correct computational model. Seven groups of numerical models differing in the used formulation of elements integration, mesh density localization, nonlinear material model, and initial geometric imperfection were calibrated. The results of these advanced simulations were validated with published results obtained by an extensive experimental approach on circular hollow sections columns. With regard to the different slenderness of the cross-sections, the influence of the initial imperfection in the form of global and local loss of stability on the response was studied. Responses of all models were validated by comparing the averaged normalized ultimate loads and the averaged normalized deflections with experimentally obtained results.
Validation of Stainless-Steel CHS Columns Finite Element Models.
阅读:3
作者:Jindra Daniel, Kala ZdenÄk, Kala JiÅÃ
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2021 | 起止号: | 2021 Apr 4; 14(7):1785 |
| doi: | 10.3390/ma14071785 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
