Investigating the Aging Behavior of High-Density Polyethylene and Polyketone in a Liquid Organic Hydrogen Carrier.

阅读:3
作者:Surisetty Jyothsna, Sharifian Mohammadhossein, Lucyshyn Thomas, Holzer Clemens
Hydrogen is recognized as a significant potential energy source and energy carrier for the future. On the one hand, storing hydrogen is a challenging task due to its low volumetric density, on the other hand, a particular type of hydrogen in the form of a liquid can be used to store large quantities of hydrogen at ambient conditions in thermoplastic tanks. But storing hydrogen in this form for a long time in polymer tanks affects the physical and chemical properties of the liner. In the current automotive industry, high-density polyethylene (HDPE) has already been used in existing fuel tank applications. However long-term exposure to fuels leads to the permeation of hydrocarbons into the polymers, resulting in a loss of mechanical properties and reducing the efficiency of fuel cells (FC) in automotive applications. Additionally, facing material shortages and a limited supply of resin leads to an increase in the cost of the material. Therefore, an alternative material is being searched for, especially for hydrogen fuel tank applications. In this study, two semi-crystalline thermoplastics, HDPE and polyketone (POK), were compared, which were exposed to a selected liquid organic hydrogen carrier (LOHC) at 25 °C and 60 °C for up to 500 h in an enclosed chamber, to measure their fuel up-take. A short analysis was carried out using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and mechanical testing to understand the influence of the LOHC on the polymer over time. Fuel sorption and tensile properties showed a plasticizing effect on HDPE. The material degradation was more pronounced for the aged samples of HDPE in comparison to POK. As expected, thermal aging was increased at 60 °C. The fuel absorption of POK was lower compared to HDPE. A slight increase in crystallinity was observed in POK due to the aging process that led to changes in mechanical properties. Both HDPE and POK samples did not show any chemical changes during the aging process in the oven at 25 °C and 60 °C.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。