A key abiotic stress that negatively affects seed germination, plant development, and crop yield is moisture deficit stress. Achieving higher vigour and uniform germination under stress conditions is essential for crop establishment and productivity and to enhance the yield. Hence, revealing wheat's capacity to withstand moisture deficit stress during seed germination and early growth stages is fundamental in improving its overall performance. However, the genetic regulation of moisture deficit stress tolerance during the seed germination phase remains largely unexplored. In this study, a total of 193 wheat genotypes were subjected to simulated moisture deficit stress using PEG-6000 (-0.4 MPa) during the seed germination stage. The induced moisture deficit stress significantly reduced various seedling-vigour-related traits. The genetic regions linked to these traits were found using a genome-wide association study (GWAS). The analysis identified 235 MTAs with a significance -log10(p) value of >4. After applying the Bonferroni correction, the study identified 47 unique single nucleotide polymorphisms (SNPs) that are linked to candidate genes important for the trait of interest. The current study emphasises the effectiveness of genome-wide association studies (GWAS) in identifying promising candidate genes, improving wheat seedling vigour and root traits, and offering essential information for the development of wheat cultivars tolerant to moisture deficit stress.
Unravelling the Genetic Basis of Moisture Deficit Stress Tolerance in Wheat for Seedling Vigour-Related Traits and Root Traits Using Genome-Wide Association Study.
阅读:5
作者:Ramappa S, Joshi Monika A, Krishna Hari, Dunna Vijay, Jain Neelu, Sreevathsa Rohini, Devate Narayana Bhat
| 期刊: | Genes | 影响因子: | 2.800 |
| 时间: | 2023 | 起止号: | 2023 Sep 30; 14(10):1902 |
| doi: | 10.3390/genes14101902 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
