A 7 gene expression score predicts for radiation response in cancer cervix

个基因表达评分可预测宫颈癌的放射反应

阅读:5
作者:Thangarajan Rajkumar, Neelakantan Vijayalakshmi, Kesavan Sabitha, Sundersingh Shirley, Ganesharaja Selvaluxmy, Mayil Vahanan Bose, Lavanya Nambaru

Background

Cervical cancer is the most common cancer among Indian women. The current recommendations are to treat the stage IIB, IIIA, IIIB and IVA with radical radiotherapy and weekly cisplatin based chemotherapy. However, Radiotherapy alone can help cure more than 60% of stage IIB and up to 40% of stage IIIB patients.

Conclusion

We have identified a 7 gene signature which could help identify patients with cervical cancer who can be treated with radiotherapy alone. However, this needs to be validated in a larger patient population.

Methods

Archival RNA samples from 15 patients who had achieved complete remission and stayed disease free for more than 36 months (No Evidence of Disease or NED group) and 10 patients who had failed radical radiotherapy (Failed group) were included in the study. The RNA were amplified, labelled and hybridized to Stanford microarray chips and analyzed using BRB Array Tools software and Significance Analysis of Microarray (SAM) analysis. 20 genes were selected for further validation using Relative Quantitation (RQ) Taqman assay in a Taqman Low-Density Array (TLDA) format. The RQ value was calculated, using each of the NED sample once as a calibrator. A scoring system was developed based on the RQ value for the genes.

Results

Using a seven gene based scoring system, it was possible to distinguish between the tumours which were likely to respond to the radiotherapy and those likely to fail. The mean score +/- 2 SE (standard error of mean) was used and at a cut-off score of greater than 5.60, the sensitivity, specificity, Positive predictive value (PPV) and Negative predictive value (NPV) were 0.64, 1.0, 1.0, 0.67, respectively, for the low risk group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。