The purpose of the research is to predict the compressive and flexural strengths of the concrete mix by using waste marble powder as a partial replacement of cement and sand, based on the experimental data that was acquired from the laboratory tests. In order to accomplish the goal, the models of Support vector machines, Support vector machines with bagging and Stochastic, Linear regression, and Gaussian processes were applied to the experimental data for predicting the compressive and flexural strength of concrete. The effectiveness of models was also evaluated by using statistical criteria. Therefore, it can be inferred that the gaussian process and support vector machine methods can be used to predict the respective outputs, i.e., flexural and compressive strength. The Gaussian process and Support vector machines Stochastic predicts better outcomes for flexural and compressive strength because it has a higher coefficient of correlation (0.8235 and 0.9462), lower mean absolute and root mean squared error values as (2.2808 and 1.8104) and (2.8527 and 2.3430), respectively. Results suggest that all applied techniques are reliable for predicting the compressive and flexural strength of concrete and are able to reduce the experimental work time. In comparison to input factors for this data set, the number of curing days followed by the CA, C, FA, w, and MP is essential in predicting the flexural and compressive strength of a concrete mix for this data set.
Machine Learning Techniques for Evaluating Concrete Strength with Waste Marble Powder.
阅读:3
作者:Sharma Nitisha, Thakur Mohindra Singh, Sihag Parveen, Malik Mohammad Abdul, Kumar Raj, Abbas Mohamed, Saleel Chanduveetil Ahamed
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2022 | 起止号: | 2022 Aug 23; 15(17):5811 |
| doi: | 10.3390/ma15175811 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
