Genome engineering has become a powerful tool for creating useful strains in research and industry. In this study, we applied singleplex and multiplex genome engineering approaches to construct an E. coli strain for the production of L-DOPA from glucose. We first used the singleplex genome engineering approach to create an L-DOPA-producing strain, E. coli DOPA-1, by deleting transcriptional regulators (tyrosine repressor tyrR and carbon storage regulator A csrA), altering glucose transport from the phosphotransferase system (PTS) to ATP-dependent uptake and the phosphorylation system overexpressing galactose permease gene (galP) and glucokinase gene (glk), knocking out glucose-6-phosphate dehydrogenase gene (zwf) and prephenate dehydratase and its leader peptide genes (pheLA) and integrating the fusion protein chimera of the downstream pathway of chorismate. Then, multiplex automated genome engineering (MAGE) based on 23 targets was used to further improve L-DOPA production. The resulting strain, E. coli DOPA-30N, produced 8.67âg/L of L-DOPA in 60âh in a 5âL fed-batch fermentation. This titer is the highest achieved in metabolically engineered E. coli having PHAH activity from glucose.
Genome engineering Escherichia coli for L-DOPA overproduction from glucose.
阅读:8
作者:Wei Tao, Cheng Bi-Yan, Liu Jian-Zhong
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2016 | 起止号: | 2016 Jul 15; 6:30080 |
| doi: | 10.1038/srep30080 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
