The vegetation index is a key satellite-based variable used to monitor global vegetation distribution and growth. However, existing vegetation index datasets face limitations in achieving both high spatial and temporal resolution, restricting their application potential. This study revised a machine learning spatiotemporal fusion model (InENVI) to produce a high-resolution NDVI dataset with 8-day temporal and 30âm spatial resolution, covering China from 2001 to 2020. A total of 432,230 Landsat scenes were processed, enhancing data quality and accuracy. The dataset was validated using 255,000 samples across 6 geographical regions, showing strong performance in capturing spatiotemporal NDVI variations. Additionally, the dataset effectively addresses Scan Line Corrector-off stripes in Landsat 7 imagery. This dataset enables reliable annual NDVI estimates for China at a 30-m resolution and is available for reuse through an open data repository.
Long-term reconstructed vegetation index dataset in China from fused MODIS and Landsat data.
阅读:4
作者:Li Xiangqian, Peng Qiongyan, Shen Ruoque, Xu Wenfang, Qin Zhangcai, Lin Shangrong, Ha Si, Kong Dongdong, Yuan Wenping
| 期刊: | Scientific Data | 影响因子: | 6.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 26; 12(1):152 |
| doi: | 10.1038/s41597-025-04497-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
