Amyotrophic lateral sclerosis (ALS) is a devastating disorder of the central nervous system in middle and old age that leads to progressive loss of spinal motoneurons. Transgenic mice overexpressing mutated human Cu(2+)/Zn(2+) superoxide dismutase 1 (SOD1) reproduce clinical features of the familial form of ALS. However, changes in SOD1 activity do not correlate with severity of motor decline in sporadic cases, indicating that targets unrelated to superoxide metabolism contribute to the pathogenesis of the disease. We show here that transgenic expression in mice of GluR-B(N)-containing L-alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptors with increased Ca(2+) permeability leads to late-onset degeneration of neurons in the spinal cord and decline of motor functions. Neuronal death progresses over the entire lifespan but manifests clinically in late adulthood, resembling the course of a slow neurodegenerative disorder. Additional transgenic expression of mutated human SOD1 accelerates disease progression, aggravates the severity of motor decline, and decreases survival. These observations link persistently elevated Ca(2+) influx through AMPA channels with progressive motor decline and late-onset degeneration of spinal motoneurons, indicating that functionally altered AMPA channels may be causally related to pathogenesis of sporadic ALS in humans.
Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit.
阅读:4
作者:Kuner Rohini, Groom Anthony J, Bresink Iris, Kornau Hans-Christian, Stefovska Vanya, Müller Gerald, Hartmann Bettina, Tschauner Karsten, Waibel Stefan, Ludolph Albert C, Ikonomidou Chrysanthy, Seeburg Peter H, Turski Lechoslaw
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2005 | 起止号: | 2005 Apr 19; 102(16):5826-31 |
| doi: | 10.1073/pnas.0501316102 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
