Low cycle fatigue of thin-wall printed Onyx in energy absorption.

阅读:4
作者:Jimenez-Martinez Moises, Narvaez Guillermo, Diaz-Montiel Paulina
Passive safety systems have been evaluated for their ability to transform impact energy into deformation to reduce the probability of damage to passengers during crash events. Low-speed impacts are common during collisions and many structural components are not replaced after such collisions because of the recovery of visual components such as the bumper fascia. However, automotive foams and brackets deform permanently in case a new impact fails to dissipate energy. In this study, a thin-walled printed Onyx component was fabricated via additive manufacturing. This material was used to dissipate energy at low-cycle fatigue and recovery in the peak crushing force after the first crushing cycle. The thin-wall crash box printed with Onyx, can be designed to recover energy absorption in different regions of the crushing displacement. The first peak crushing force and the mean crushing force are recovered according to the geometry and small displacements. However, in medium and long crushing displacements, at the end of the compression its dissipation capacity is increased. Onyx printed mechanical absorber withstand fifteen load cycles, recovering the peak load 19.25%.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。