Multivariate time series short term forecasting using cumulative data of coronavirus.

阅读:4
作者:Mishra Suryanshi, Singh Tinku, Kumar Manish, Satakshi
Coronavirus emerged as a highly contagious, pathogenic virus that severely affects the respiratory system of humans. The epidemic-related data is collected regularly, which machine learning algorithms can employ to comprehend and estimate valuable information. The analysis of the gathered data through time series approaches may assist in developing more accurate forecasting models and strategies to combat the disease. This paper focuses on short-term forecasting of cumulative reported incidences and mortality. Forecasting is conducted utilizing state-of-the-art mathematical and deep learning models for multivariate time series forecasting, including extended susceptible-exposed-infected-recovered (SEIR), long-short-term memory (LSTM), and vector autoregression (VAR). The SEIR model has been extended by integrating additional information such as hospitalization, mortality, vaccination, and quarantine incidences. Extensive experiments have been conducted to compare deep learning and mathematical models that enable us to estimate fatalities and incidences more precisely based on mortality in the eight most affected nations during the time of this research. The metrics like mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed to gauge the model's effectiveness. The deep learning model LSTM outperformed all others in terms of forecasting accuracy. Additionally, the study explores the impact of vaccination on reported epidemics and deaths worldwide. Furthermore, the detrimental effects of ambient temperature and relative humidity on pathogenic virus dissemination have been analyzed.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。