Temporal lobe epilepsy (TLE) is the most common focal epilepsy, with focal to bilateral tonic-clonic seizures (FBTCS+) a more severe form of the disorder. Evidence has underscored the critical role of the thalamus, mesial temporal region, basal ganglia and cerebellum, along with the cortex, in the propagation, termination, and modulation of seizure activity. We examined time variant patterns of interaction within and between 7 cortical and 4 subcortical systems in 55 healthy controls and 56 patients with TLE (nâ=â40 with FBTCS+ and 15 without), isolating those patterns most distinctive of FBTCS+ utilizing tools from dynamic network neuroscience on inter-ictal resting state fMRI data. A complex set of subcortio-cortico interactions appeared to support the secondary generalization characteristic of FBTCS+ status, specifically integrations involving the caudate and cereb-5 subcortical subsystems with the ventral attention network, suggesting motor and attention system communications are dysregulated. These abnormal subcortico-cortico dynamics were more prominent in current versus a remote history of FBTCS+. We concluded that the inter-ictal state provided a breeding ground for reconfiguring dynamic communication within and between multiple cortical-subcortical systems. These findings broaden our understanding of seizure propagation effects in TLE, pointing toward biomarkers that may mark the transition from focal seizures to the more severe form of TLE (FBTCSâ+).
Multiple subcortical and subcortico-cortico dynamic network reconfigurations characterize focal-to-bilateral tonic-clonic seizures.
阅读:4
作者:Modi Shilpi, Ankeeta A, Hinds Walter, Sperling Michael R, He Xiaosong, Tracy Joseph I
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 15(1):22182 |
| doi: | 10.1038/s41598-025-96418-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
