Cognitive and plastic recurrent neural network clock model for the judgment of time and its variations.

阅读:2
作者:Hallez Quentin, Mermillod Martial, Droit-Volet Sylvie
The aim of this study in the field of computational neurosciences was to simulate and predict inter-individual variability in time judgements with different neuropsychological properties. We propose and test a Simple Recurrent Neural Network-based clock model that is able to account for inter-individual variability in time judgment by adding four new components into the clock system: the first relates to the plasticity of the neural system, the second to the attention allocated to time, the third to the memory of duration, and the fourth to the learning of duration by iteration. A simulation with this model explored its fit with participants' time estimates in a temporal reproduction task undertaken by both children and adults, whose varied cognitive abilities were assessed with neuropsychological tests. The simulation successfully predicted 90% of temporal errors. Our Cognitive and Plastic RNN-Clock model (CP-RNN-Clock), that takes into account the interference arising from a clock system grounded in cognition, was thus validated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。