Despite considerable interest in the properties of the cingulum bundle, descriptions of the composition of this major pathway in the rodent brain have not kept pace with advances in tract tracing. Using complementary approaches in rats and mice, this study examined the dense, reciprocal connections the anterior thalamic nuclei have with the cingulate and retrosplenial cortices, connections thought to be major contributors to the rodent cingulum bundle. The rat data came from a mixture of fluorescent and viral tracers, some injected directly into the bundle. The mouse data were collated from the Allen Mouse Brain Atlas. The projections from the three major anterior thalamic nuclei occupied much of the external medullary stratum of the cingulum bundle, where they were concentrated in its more medial portions. These anterior thalamic projections formed a rostral-reaching basket of efferents prior to joining the cingulum bundle, with anteromedial efferents taking the most rostral routes, often reaching the genu of the corpus callosum, while anterodorsal efferents took the least rostral route. In contrast, the return cortico-anterior thalamic projections frequently crossed directly through the bundle or briefly joined the internal stratum of the cingulum bundle, often entering the internal capsule before reaching the anterior thalamus. These analyses confirm that anterior thalamic connections comprise an important component of the rodent cingulum bundle, while also demonstrating the very different routes used by thalamo-cortical and cortico-thalamic projections. This information reveals how the composition of the cingulum bundle alters along its length.
Organisation of cingulum bundle fibres connecting the anterior thalamic nuclei with the rodent anterior cingulate and retrosplenial cortices.
阅读:4
作者:Bubb Emma J, Nelson Andrew J D, Cozens Thomas C, Aggleton John P
| 期刊: | Brain and Neuroscience Advances | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2020 Sep 9; 4:2398212820957160 |
| doi: | 10.1177/2398212820957160 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
