Based on a convolutional neural network (CNN) approach, this article proposes an improved ResNet-18 model for heartbeat classification of electrocardiogram (ECG) signals through appropriate model training and parameter adjustment. Due to the unique residual structure of the model, the utilized CNN layered structure can be deepened in order to achieve better classification performance. The results of applying the proposed model to the MIT-BIH arrhythmia database demonstrate that the model achieves higher accuracy (96.50%) compared to other state-of-the-art classification models, while specifically for the ventricular ectopic heartbeat class, its sensitivity is 93.83% and the precision is 97.44%.
ECG Heartbeat Classification Based on an Improved ResNet-18 Model.
阅读:3
作者:Jing Enbiao, Zhang Haiyang, Li ZhiGang, Liu Yazhi, Ji Zhanlin, Ganchev Ivan
| 期刊: | Computational and Mathematical Methods in Medicine | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 Apr 30; 2021:6649970 |
| doi: | 10.1155/2021/6649970 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
