Portable head CT motion artifact correction via diffusion-based generative model.

阅读:10
作者:Chen Zhennong, Yoon Siyeop, Strotzer Quirin, Khalid Rehab Naeem, Tivnan Matthew, Li Quanzheng, Gupta Rajiv, Wu Dufan
Portable head CT images often suffer motion artifacts due to the prolonged scanning time and critically ill patients who are unable to hold still. Image-domain motion correction is attractive for this application as it does not require CT projection data. This paper describes and evaluates a generative model based on conditional diffusion to correct motion artifacts in portable head CT scans. This model was trained to find the motion-free CT image conditioned on the paired motion-corrupted image. Our method utilizes histogram equalization to resolve the intensity range discrepancy of skull and brain tissue and an advanced Elucidated Diffusion Model (EDM) framework for faster sampling and better motion correction performance. Our EDM framework is superior in correcting artifacts in the brain tissue region and across the entire image compared to CNN-based methods and standard diffusion approach (DDPM) in a simulation study and a phantom study with known motion-free ground truth. Furthermore, we conducted a reader study on real-world portable CT scans to demonstrate improvement of image quality using our method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。