Macrophage sensitivity to bexmarilimab-induced reprogramming is shaped by the tumor microenvironment.

阅读:22
作者:Rannikko Jenna H, Turpin Rita, Boström Pia, Virtakoivu Reetta, Harth Chantal, Takeda Akira, Tamminen Anselm, Koskivuo Ilkka, Hollmén Maija
BACKGROUND: Tumor-associated macrophages (TAMs) adapt to the tumor microenvironment (TME), either aiding cancer eradication or promoting tumor growth and immune evasion. To manipulate TAMs therapeutically, a deep understanding of their interaction with the TME is essential. This study explores the responsiveness of TMEs to bexmarilimab, a macrophage reprogramming therapy showing clinical benefit in various solid tumors. METHODS: We exploited a breast cancer patient-derived explant culture (PDEC) model to characterize bexmarilimab responses in both tumor and adjacent cancer-free tissues by RNA sequencing and multiplex cytokine profiling. Using single-cell RNA sequencing, spatial transcriptomics, and conditioned media treatment, we further investigated the effects of Clever-1+ macrophages and TME features on bexmarilimab sensitivity. RESULTS: The PDEC model captured key aspects of bexmarilimab's mode of action and validated a gene signature for determining treatment sensitivity. We identified three distinct responses to bexmarilimab in tumors and adjacent cancer-free tissues, shaped by the local microenvironment and macrophage phenotype, origin, and localization. The inflammatory state of the TME emerged as the primary determinant of response. Immune activation occurred in immunologically cold TMEs lacking late-stage activated TAMs, whereas interferon-regulated TMEs exhibited suppressed inflammation. In cancer-free breast tissue, bexmarilimab activated B cell responses independent of treatment sensitivity in the adjacent tumor. CONCLUSIONS: These findings reveal the complexity of TAM targeting in cancer and emphasize the need for patient selection to maximize bexmarilimab's efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。