Gene delivery to human adult and embryonic cell-derived stem cells using biodegradable nanoparticulate polymeric vectors.

阅读:3
作者:Yang F, Green J J, Dinio T, Keung L, Cho S-W, Park H, Langer R, Anderson D G
Gene delivery to stem cells holds great potential for tissue regeneration and delivery of therapeutic proteins. The major barrier is the lack of safe and efficient delivery methods. Here, we report enhanced gene delivery systems for human stem cells using biodegradable polymeric vectors. A library of poly (beta-amino esters) end-modified derivatives was developed and optimized for high transfection efficiency and low cytotoxicity for three human stem cell lines including human mesenchymal stem cells (hMSCs), human adipose-derived stem cells (hADSCs) and human embryonic stem cell-derived cells (hESCds). In the presence of 10% serum, leading end-modified C32 polymeric vectors exhibited significantly high transfection efficiency in hMSCs (27+/-2%), hADSCs (24+/-3%) and hESCds (56+/-11%), with high cell viability (87-97%) achieved in all cell types. Our results show that poly(beta-amino esters) as a class, and end-modified versions of C32 in particular, are efficient polymeric vectors for gene delivery to both adult and embryonic-derived stem cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。