Preparation, characterization, and energy simulation of ZnTiO(3) high near-infrared reflection pigment and its anti-graffiti coating.

阅读:3
作者:Wang Song, Wang Jihu, Wen Shaoguo, Li Hui, Xie Chen, Li Shuaibiao, Mei Dajiang
In the field of cooling materials, ZnTiO(3) (ZT) is still a new member that needs to be further studied. In this paper, pure cubic ZT was synthesized by the sol-gel method, and the effect of calcination temperature on ZT synthesis was investigated. The hydrophobic modification was carried out on ZT to prepare near-infrared reflective thermal insulation functional composite coatings based on silicone resin (SI). Compared with unmodified ZT (U-ZT), the modified ZT (M-ZT) exhibits better dispersion in the SI matrix, contributing to improved solar reflectance and anti-graffiti performance. The EnergyPlus software was used to simulate energy consumption in the air conditioning system. The excellent chemical stability and high NIR reflectance made the synthesized pigments potential candidates for energy-saving coatings. The simulation showed that homeowners could save $10.29 a month by applying an energy-efficient coating consisting of ZT to the walls and roofs of their buildings. Besides, these coatings show potential anti-graffiti application due to the exceptional repellency of coated surfaces against water-based ink, oily red marker, and paint.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。