Transport of membrane and cytosolic proteins into the primary cilium is essential for its role in cellular signaling. Using virtual three-dimensional superresolution light microscopy, the movements of membrane and soluble proteins from the cytoplasm to the primary cilium were mapped. In addition to the well-characterized intraflagellar transport (IFT) route, we found two new pathways within the lumen of the primary cilium: passive diffusion and vesicle-assisted transport routes that are adopted by proteins for cytoplasm-cilium transport in live cells. Through these pathways, approximately half of IFT motors (KIF3A) and cargo (α-tubulin) take the passive diffusion route, and more than half of membrane-embedded G protein-coupled receptors (SSTR3 and HTR6) use RAB8A-regulated vesicles to transport into and inside primary cilia. Ciliary lumen transport is the preferred route for membrane proteins in the early stages of ciliogenesis, and inhibition of SSTR3 vesicle transport completely blocks ciliogenesis. Furthermore, clathrin-mediated, signal-dependent internalization of SSTR3 also occurs through the ciliary lumen. These transport routes were also observed in Chlamydomonas reinhardtii flagella, suggesting their conserved roles in trafficking of ciliary proteins.
The ciliary lumen accommodates passive diffusion and vesicle-assisted trafficking in cytoplasm-ciliary transport.
阅读:10
作者:Ruba Andrew, Tingey Mark, Luo Wangxi, Yu Jingjie, Evangelou Athanasios, Higgins Rachel, Khim Saovleak, Yang Weidong
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2023 | 起止号: | 2023 May 15; 34(6):ar59 |
| doi: | 10.1091/mbc.E22-10-0452 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
